4. Geometry

1 mark Questions

1.	If in triangles ABC and EDF,	$\frac{AB}{DE} =$	$\frac{BC}{FD}$ then they will be similar, when
----	------------------------------	-------------------	---

$$(A) \angle B = \angle E$$

(B)
$$\angle A = \angle D$$

(C)
$$\angle B = \angle D$$

(D)
$$\angle A = \angle F$$

2. In
$$\Delta LMN$$
, $\angle L = 60^{\circ}$, $\angle M = 50^{\circ}$. If $\Delta LMN \sim \Delta PQR$ then the value of $\angle R$ is

SEP-20

(A)
$$40^{\circ}$$

(C)
$$30^{\circ}$$

3. If $\triangle ABC$ is an isosceles triangle with $\angle C = 90^{\circ}$ and AC = 5 cm, then AB is

PTA-4, MAY-22

(D)
$$5\sqrt{2}$$
 cm

4. In a given figure $ST \parallel QR$, PS = 2 cm and SQ = 3 cm. Then the ratio of the area of ΔPQR to the area of ΔPST is

- 5. The perimeters of two similar triangles $\triangle ABC$ and $\triangle PQR$ are 36 cm and 24 cm respectively. If $PQ = 10 \, cm$, then the length of AB is PTA-5
 - (A) $6\frac{2}{3}cm$
- (B) $\frac{10\sqrt{6}}{2}$ cm
- (C) $66\frac{2}{3}cm$
- (D) 15 cm
- 6. If in $\triangle ABC$, $DE \parallel BC$. AB = 3.6 cm, AC = 2.4 cm and AD = 2.1 cm then the length of AE is
 - (A) 1.4 cm
- (B) 1.8 cm
- (C) 1.2 cm
- (D) 1.05 *cm* [SEP-21, PTA-3, JUL-22]
- 7. In a \triangle ABC, AD is the bisector of \angle BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. The length of the side AC is PTA-6, MAY-22
 - (A) 6 cm
- (B) 4 cm
- (C) 3 cm
- (D) 8 cm
- 8. In the adjacent figure $\angle BAC = 90^{\circ}$ and $AD \perp BC$ then
 - (A) $BD \cdot CD = BC^2$

(B) $AB \cdot AC = BC^2$

(D) $AB \cdot AC = AD^2$

- 9. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops?
 - (A) 13 m
- (B) 14 m
- (C) 15 m
- (D) 12.8 m
- 10. In the given figure, PR = 26 cm, QR = 24 cm, $\angle PAQ = 90^{\circ}$,

 $PA = 6 \ cm \ and \ QA = 8 \ cm.$ Find $\angle PQR$

(B) 85°

 $(D) 90^{\circ}$

- 11. A tangent is perpendicular to the radius at the
 - (A) centre
- **(B)** point of contact (C) infinity
- (D) chord

PTA-2

- 12. How many tangents can be drawn to the circle from an exterior point?
 - (A) one

- (B) two
- (C) infinite
- (D) zero

SEP-21, JUL-22

13. The two tangents from an external points *P* to a circle with centre at *O* are *PA* and *PB*. If

 $\angle APB = 70^{\circ}$ then the value of $\angle AOB$ is

- (A) 100°
- (B) 110°
- (C) 120°
- (D) 130°
- 14. If figure *CP* amd *CQ* are tangents to a circle with centre at *O*. ARB is another tangent touching the circle at R. If CP = 11 cmand BC = 7 cm, then the length of BR is

- (A) 6 cm
- (B) 5 cm
- (C) 8 cm
- (D) 4 cm
- 15. In figure if *PR* is tangent to the circle at *P* and *O* is the centre of the circle, then $\angle POQ$ is

(C) 110°

(D) 90°

2 mark Questions

- 1. In $\triangle ABC$, D and E are points on the sides AB and AC respectively such that DE||BC|
 - (i) If $\frac{AD}{DR} = \frac{3}{4}$ and AC = 15cm find AE.

SEP-20

Given in $\triangle ABC$, D and E are points an the sides AB & AC respectively such that DE||BC

∴ By Thales theorem,
$$\frac{AD}{DB} = \frac{AE}{EC}$$

Let $EC = x$, $AE = 15 - x$

$$\frac{3}{4} = \frac{15 - x}{x}$$

$$3x = 60 - 4x$$

$$3x + 4x = 60$$

$$7x = 60$$

$$x = \frac{60}{7} = 8.57$$

$$AE = 15 - 8.57 = 6.43cm$$

(ii) If AD = 8x - 7, DB = 5x - 3, AE = 4x - 3 and EC = 3x - 1, find the value of x.

By Thales theorem, $\frac{AD}{DB} = \frac{AE}{EC}$ $\frac{8x-7}{5x-3} = \frac{4x-3}{3x-1}$ (8x-7)(3x-1) = (4x-3)(5x-3)

$$\frac{8x-7}{5x-3} = \frac{4x-3}{3x-1}$$

$$(8x - 7)(3x - 1) = (4x - 3)(5x - 3)$$

$$24x^2 - 8x - 21x + 7 = 20x^2 - 12x - 15x + 9$$

$$4x^2 - 2x - 2 = 0$$

$$\div 2 \Rightarrow 2x^2 - x - 1 = 0$$

$$(x-1)(2x+1) = 0$$

$$x = 1 \text{ (or) } x = -\frac{1}{2} \Rightarrow x = 1$$

Since
$$x \neq -\frac{1}{2}$$

4. Geometry – Important Questions 💍

3

SEP-20

2. ABCD is a trapezium which AB||DC and P, Q are points on AD and BC respectively, such that PQ||DC if PD = 18cm, BQ = 35cm and QC = 15cm, and find AD.JUL-22

In trapezium ABCD, $AB \parallel CD \parallel PQ$ Join AC, meets PQ at R In $\triangle ACD$, $PR \parallel CD$ By BPT, $\frac{AP}{PD} = \frac{AR}{RC}$ $\frac{x}{18} = \frac{AR}{RC}$(1) In $\triangle ABC$, $RQ \parallel AB$ By BPT, $\frac{BQ}{QC} = \frac{AR}{RC}$ $\frac{7}{3} = \frac{AR}{RC}$(2)

From (1) and (2), $\frac{x}{18} = \frac{7}{3}$ 3x = 126 $x = \frac{126}{3} = 42$

If
$$AP = x$$

 $AP = 42$
 $AD = AP + PD = 42 + 18 = 60$ cm

- 3. Check whether *AD* is bisector of $\angle A$ of $\triangle ABC$ in each of the following
 - (i) AB = 5cm, AC = 10cm, BD = 1.5cm and CD = 3.5cm

Given: In the $\triangle ABC$,

$$\frac{DC}{DC} = \frac{15}{3.5}$$

$$\frac{BD}{DC} = \frac{15}{35}$$

$$\frac{BD}{DC} = \frac{3}{7}$$
 (2)

(1) & (2)
$$\Rightarrow \frac{AB}{AC} \neq \frac{BD}{DC}$$

- $\therefore AD$ is **not an angle bisector** of $\angle A$
- (ii) AB = 4cm, AC = 6cm, BD = 1.6cm and CD = 2.4cm

$$\frac{AB}{AC} = \frac{4}{6}$$

$$\frac{BD}{CD} = \frac{1.6}{2.4}$$

$$\frac{BD}{CD} = \frac{16}{24}$$

$$\frac{BD}{CD} = \frac{2}{3}$$
....(2)

(1)& (2)
$$\frac{AB}{AC} = \frac{BD}{CD}$$

 \Rightarrow *AD* is the angle **bisector** of $\angle A$

4. A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?

Given,
$$BC = 18$$
m, $BA = 24$ m
By Pythagoras theorem, $AC^2 = AB^2 + BC^2$
 $= 24^2 + 18^2$
 $= 576 + 324$
 $AC^2 = 900 = 30^2$
 $AC = 30$ m

5 mark Questions

Theorem 1: Basic Proportionality Theorem (BPT) or Thales theorem

MAY-22

Statement: A straight line drawn parallel to a side of triangle intersectin the other two sides, divides the sides in the same ratio.

Proof:

Given: In $\triangle ABC$, D is a point on AB and E is a point on AC.

To prove:
$$\frac{AD}{DB} = \frac{AE}{EC}$$

Construction: Draw a line *DE* ∥ *BC*

No.	Statement	Reason
1.	$\angle ABC = \angle ADE = \angle 1$	Corresponding angles are equal because DE BC
2.	$\angle ACB = \angle AED = \angle 2$	Corresponding angles are equal because DE BC
3.	$\angle DAE = \angle BAC = \angle 3$	Both triangles have a common angle
4.	$\Delta ABC \sim \Delta ADE$	By AAA similarity
	$\frac{AB}{AD} = \frac{AC}{AE}$	Corresponding sides are proportional
	$\frac{AD + DB}{AD} = \frac{AE + EC}{AE}$	Split AB and AC using the points D and E
	$1 + \frac{DB}{AD} = 1 + \frac{EC}{AE}$	On simplification
	$\frac{DB}{AD} = \frac{EC}{AE}$	Cancelling 1 on both sides
	$\frac{AD}{DB} = \frac{AE}{EC}$	Taking reciprocals
Hence proved		

Corollary: If in $\triangle ABC$, a straight line DE parallel to BC, intersects AB at D and AC at E, then

$$(i) \frac{AB}{AD} = \frac{AC}{AE}$$

(ii)
$$\frac{AB}{DB} = \frac{AC}{EC}$$

2. Theorem 3: Angle Bisector Theorem

PTA-5,SEP-20, JUL-22

Statement: The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.

Proof:

Given : In $\triangle ABC$, AD is the internal bisector

To prove:

$$\frac{AB}{AC} = \frac{BD}{CD}$$

Construction:

Draw a line through C parallel to AB. Extend AD to meet line through C at E

No.	Statement	Reason
1.	$\angle AEC = \angle BAE = \angle 1$	Two parallel lines cut by a transversal make alternate angles equal.
2.	$\triangle ACE$ is isosceles $AC = CE$ (1)	In $\triangle ACE$, $\angle CAE = \triangle CEA$
3.	$\Delta ABD \sim \Delta ECD$ $\frac{AB}{CE} = \frac{BD}{CD}$	By AA similarity
4.	$\frac{AB}{AC} = \frac{BD}{CD}$	From (1) $AC = CE$ Hence proved.

3. Theorem 4: Converse of Angle Bisector Theorem

Statement: If a straight line through one vertex of a triangle divides the opposite side internally in the ratio of the other two sides, then the line bisects the angle internally at the vertex.

PTA-3, 4

Proof:

Given : ABC is a triangle.

AD divides BC in the ratio of the sides containing the angles $\angle A$ to meet BC at D.

That is
$$\frac{AB}{AC} = \frac{BD}{DC}$$
(1)

To prove : AD bisects $\angle A$ i.e. $\angle 1 = \angle 2$

Construction : Draw $CE \parallel DA$. Extend BA to meet at E.

No. Statement Reason 1. Let $\angle BAD = \angle 1$ and $\angle DAC = \angle 2$ 2. $\angle BAD = \angle AEC = \angle 1$ Since $DA \parallel CE$ and AC is transversal, corresponding angles are equal 3. $\angle DAC = \angle ACE = \angle 2$ Since $DA \parallel CE$ and AC is transversal, Alternate angles are equal 4. $\frac{BA}{AE} = \frac{BD}{DC}$			
Assumption 2. $\angle BAD = \angle AEC = \angle 1$ Since $DA \parallel CE$ and AC is transversal, corresponding angles are equal 3. $\angle DAC = \angle ACE = \angle 2$ Since $DA \parallel CE$ and AC is transversal, Alternate angles are equal 4. $\frac{BA}{AE} = \frac{BD}{DC}$	No.	Statement	Reason
corresponding angles are equal 3. $\angle DAC = \angle ACE = \angle 2$ Since $DA \parallel CE$ and AC is transversal, Alternate angles are equal 4. $\frac{BA}{AE} = \frac{BD}{DC}$ (2) In $\triangle BCE$ by thales theorem 5. $\frac{AB}{AC} = \frac{BD}{DC}$ From (1) 6. $\frac{AB}{AC} = \frac{BA}{AE}$ From (1) and (2) 7. $AC = AE$ (3) Cancelling AB 8. $\angle 1 = \angle 2$ $\triangle ACE$ is isosceles by (3) 9. AD bisects $\angle A$ Since, $\angle 1 = \angle BAD = \angle 2 = \angle DAC$.	1.		Assumption
Alternate angles are equal 4. $\frac{BA}{AE} = \frac{BD}{DC}$	2.	$\angle BAD = \angle AEC = \angle 1$	·
5. $\frac{AB}{AC} = \frac{BD}{DC}$ From (1) 6. $\frac{AB}{AC} = \frac{BA}{AE}$ From (1) and (2) 7. $AC = AE$ (3) Cancelling AB 8. $\angle 1 = \angle 2$ $\triangle ACE$ is isosceles by (3) 9. AD bisects $\angle A$ Since, $\angle 1 = \angle BAD = \angle 2 = \angle DAC$.	3.	$\angle DAC = \angle ACE = \angle 2$,
6. $\frac{AB}{AC} = \frac{BA}{AE}$ From (1) and (2) 7. $AC = AE$ (3) Cancelling AB 8. $\angle 1 = \angle 2$ $\triangle ACE$ is isosceles by (3) 9. AD bisects $\angle A$ Since, $\angle 1 = \angle BAD = \angle 2 = \angle DAC$.	4.	$\frac{BA}{AE} = \frac{BD}{DC} \dots (2)$	In ΔBCE by thales theorem
7. $AC = AE$ (3) Cancelling AB 8. $\angle 1 = \angle 2$ $\triangle ACE$ is isosceles by (3) 9. AD bisects $\angle A$ Since, $\angle 1 = \angle BAD = \angle 2 = \angle DAC$.	5.	$\frac{AB}{AC} = \frac{BD}{DC}$	From (1)
8. $\angle 1 = \angle 2$ $\triangle ACE$ is isosceles by (3) 9. AD bisects $\angle A$ Since, $\angle 1 = \angle BAD = \angle 2 = \angle DAC$.	6.	$\frac{AB}{AC} = \frac{BA}{AE}$	From (1) and (2)
9. AD bisects $\angle A$ Since, $\angle 1 = \angle BAD = \angle 2 = \angle DAC$.	7.	AC = AE(3)	Cancelling AB
	8.	∠1 = ∠2	ΔACE is isosceles by (3)
Tieffce proved	9.	<i>AD</i> bisects ∠ <i>A</i>	Since, $\angle 1 = \angle BAD = \angle 2 = \angle DAC$. Hence proved

4. Theorem 5: Pythagoras Theorem

SEP-21, PTA-4

Statement: In a right angle triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Proof:

Given: In $\triangle ABC$, $\angle A = 90^{\circ}$ To prove: $AB^2 + AC^2 = BC^2$ Construction: Draw $AD \perp BC$

No.	Statement	Reason
1.	Compare $\triangle ABC$ and $\triangle DBA$	Given $\angle BAC = 90^{\circ}$ and by construction
	∠ <i>B</i> is common	$\angle BDA = 90^{\circ}$
	$\angle BAC = \angle BDA = 90^{\circ}$	
	Therefore, $\triangle ABC \sim \triangle DBA$	By AA similarity
	$\frac{AB}{BD} = \frac{BC}{AB}$	
	$AB^2 = BC \times BD \dots (1)$	
2.	Compare $\triangle ABC$ and $\triangle DAC$	Given $\angle BAC = 90^{\circ}$ and by construction
	∠C is common	$\angle ADC = 90^{\circ}$
	$\angle BAC = \angle ADC = 90^{\circ}$	
	Therefore, $\triangle ABC \sim \triangle DAC$	By AA similarity
	$\frac{BC}{AC} = \frac{AC}{DC}$	
	$AC^2 = BC \times DC \dots (2)$	

Adding (1) and (2) we get

$$AB^{2} + AC^{2} = (BC \times BD) + (BC \times DC)$$
$$= BC \times (BD + DC)$$
$$= BC \times BC$$

$$AB^2 + AC^2 = BC^2$$

Hence the theorem is proved.

Converse of Pythagoras Theorem

Statement: If the square of the longest side of a triangle is equal to sums of squares of other two sides, then the triangle is a right angle triangle.

5. Two triangle QPR and QSR, right angled at P and S respectively are drawn on the same base QRand on the same side of QR. If PR and SQ intersect at T, prove that $PT \times TR = ST \times TQ$.

In $\triangle POR$ and $\triangle SOR$

$$\angle P = \angle S = 90^{\circ}$$
 and $\triangle SQR$

$$\angle P = \angle S = 90^{\circ}$$

And $\angle PTQ = \angle STR$ (vertically opposite angles)

Thus by AA criterion of similarity we have $\Delta PTQ \sim \Delta STR$

$$\frac{PT}{ST} = \frac{TQ}{TR}$$

$$\Rightarrow PT \times TR = TQ \times ST$$

6. Two vertical poles of heights 6m and 3m are erected above a horizontal ground AC. Find the value of y. PTA-5

In ΔPAC , ΔQBC are similar triangles

$$\frac{PA}{QB} = \frac{AC}{BC} = \frac{PQ}{QC}$$

$$\frac{6}{v} = \frac{AC}{BC}$$

$$y(AC) = 6BC....(1)$$

 $\triangle ACR$ and $\triangle ABQ$ are similar triangles

$$\frac{CR}{QB} = \frac{AC}{AB}$$

$$\frac{3}{y} = \frac{AC}{AB}$$

$$3(AB) = (AC)y.....(2)$$

$$(1) \& (2) \Rightarrow 3AB = 6BC$$

$$\frac{AB}{BC} = \frac{6}{3} = 2$$

$$AB = 2BC$$

$$AC = AB + BC$$

$$AC = 2BC + BC$$

$$(AB = 2BC)$$

PTA-6

$$AC = 3BC$$

Substitute AC = 3BC in (1) we get

$$(3BC)y = 6BC$$

$$y = \frac{6BC}{3BC}$$

$$y = 2 m$$

7. In figure $\angle QPR = 90^{\circ}$, PS is its bisector. If $ST \perp PR$, prove that $ST \times (PQ + PR) = PQ \times PR$.

Given: In the figure $\angle QPR = 90^{\circ}$,

PS is its bisector and $ST \perp PR$

$$\frac{PQ}{PR} = \frac{QS}{SR}$$

By Angle bisector theorem

$$\frac{PQ}{PR} + 1 = \frac{QS}{SR} + 1$$
 Add 1 both side

$$\frac{PQ + PR}{PR} = \frac{QS + SR}{SR}$$

$$\frac{PQ+PR}{PR} = \frac{QR}{SR}....(1)$$

In $\triangle PQR$ and $\triangle STR$

By AA similarity

$$\therefore \frac{PQ}{ST} = \frac{QR}{SR} = \frac{PR}{TR} \dots (2)$$

$$(1) \& (2) \Rightarrow \frac{PQ + PR}{PR} = \frac{PQ}{ST}$$

4. Geometry – Important Questions 💍

9

8. The hypotenuse of a right triangle is 6m more than twice of the shortest side. If the third side is 2m less than the hypotenuse, find the sides of the triangle.

In
$$\triangle ABC$$
; $\angle B = 90^{\circ}$
Let $AB = x \Rightarrow AC = 2x + 6$ and
$$BC = 2x + 4$$

$$(2x + 6)^{2} = x^{2} + (2x + 4)^{2}$$

$$4x^{2} + 36 + 24x = x^{2} + 4x^{2} + 16x + 16$$

$$x^{2} + 16x - 24x + 16 - 36 = 0$$

$$x^{2} - 8x - 20 = 0$$

$$(x - 10)(x + 2) = 0$$

$$x = 10 \text{ (or) } x = -2$$
But $x \neq -2$
If $x = 10$

$$\Rightarrow AC = 2x + 6$$

$$= 20 + 6 = 26$$

$$\Rightarrow BC = 2x + 4$$

= 20 + 4 = 24∴ The sides are AB = 10m:

BC = 24m:

9. The perpendicular PS on the base QR of a ΔPQR intersects QR at S, such that QS=3SR. Prove that $2PQ^2=2PR^2+QR^2$

AC = 26m.

Given the ΔPQR , the perpendicular on the base QR at S, such that QS = 3SR

In
$$\triangle PQS \Rightarrow PQ^2 = PS^2 + QS^2$$

 $\triangle PSR \Rightarrow PR^2 = PS^2 + SR^2$
 $\Rightarrow PS^2 = PR^2 - SR^2$
 $QR = QS + SR$
 $= 3SR + SR$
 $QR = 4SR$
 $\frac{QR}{4} = SR$
 $PQ^2 = PR^2 - SR^2 + (3SR)^2$

$$PQ^{2} = PR^{2} - SR^{2} + 9SR^{2}$$

$$PQ^{2} = PR^{2} + 8SR^{2}$$

$$PQ^{2} = PR^{2} + \frac{8QR^{2}}{16}$$

$$\Rightarrow 2PQ^{2} = 2PR^{2} + QR^{2}$$

10. Show that the angle bisectors of a triangle are concurrent.

In the $\triangle ABC$, "O" is any point inside the \triangle

PTA-4

The angle bisector $\angle AOB$, $\angle BOC$, and $\angle AOC$ meet the sides AB, BC & CA at D, E & F respectively.

∴ In $\triangle BOC$, OD is the bisector of $\triangle BOC$

$$\therefore \frac{OB}{OC} = \frac{BD}{DC} \dots (1)$$

Similarly in the triangle AOC & AOB we get

$$\frac{OC}{OA} = \frac{CE}{AE} \dots (2)$$

$$\frac{OA}{OB} = \frac{AF}{FB} \dots (3)$$

$$(1) \times (2) \times (3) \Rightarrow \frac{OB}{OC} \times \frac{OC}{OA} \times \frac{OA}{OB} = \frac{BD}{DC} \times \frac{CE}{AE} \times \frac{AF}{EB}$$
$$\frac{BD}{DC} \times \frac{CE}{AE} \times \frac{AF}{FB} = 1 \dots (4)$$

$$\frac{AB}{AC} = \frac{BD}{DC}; \frac{BC}{CA} = \frac{AF}{FB}; \frac{AB}{BC} = \frac{AE}{EC}$$

$$\frac{AB}{AC} \times \frac{BC}{CA} \times \frac{AB}{BC} = \frac{BD}{DC} \times \frac{AF}{FB} \times \frac{AE}{EC}$$

$$1 = 1$$
 (By (4))

 \therefore *O* is the point of concurrent.

The angle bisectors of a triangle concurrent

