4 . Geometry
 1 mark Questions

1. If in triangles $A B C$ and $E D F, \frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when
(A) $\angle B=\angle E$
(B) $\angle A=\angle D$
(C) $\angle \boldsymbol{B}=\angle \boldsymbol{D}$
(D) $\angle A=\angle F$
2. In $\triangle L M N, \angle L=60^{\circ}, \angle M=50^{\circ}$. If $\triangle L M N \sim \triangle P Q R$ then the value of $\angle R$ is
(A) 40°
(B) 70°
(C) 30°
(D) 110°
3. If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is

PTA-4, MAY-22
(A) 2.5 cm
(B) 5 cm
(C) 10 cm
(D) $5 \sqrt{2} \mathrm{~cm}$
4. In a given figure $S T \| Q R, P S=2 \mathrm{~cm}$ and $S Q=3 \mathrm{~cm}$. Then the ratio of the area of $\triangle P Q R$ to the area of $\triangle P S T$ is
(A) $25: 4$
(B) $25: 7$
(C) $25: 11$
(D) $25: 13$

5. The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. If $P Q=10 \mathrm{~cm}$, then the length of $A B$ is

PTA-5
(A) $6 \frac{2}{3} \mathrm{~cm}$
(B) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(C) $66 \frac{2}{3} \mathrm{~cm}$
(D) 15 cm
6. If in $\triangle A B C, D E \| B C . A B=3.6 \mathrm{~cm}, A C=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$ then the length of $A E$ is
(A) 1.4 cm
(B) 1.8 cm
(C) 1.2 cm
(D) 1.05 cm SEP-21, PTA-3, JUL-22
7. In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. The length of the side $A C$ is

PTA-6, MAY-22
(A) 6 cm
(B) 4 cm
(C) 3 cm
(D) 8 cm
8. In the adjacent figure $\angle B A C=90^{\circ}$ and $A D \perp B C$ then
(A) $B D \cdot C D=B C^{2}$
(B) $A B \cdot A C=B C^{2}$
(C) $\boldsymbol{B D} \cdot \boldsymbol{C D}=\boldsymbol{A D} \boldsymbol{D}^{2}$
(D) $A B \cdot A C=A D^{2}$

9. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m , what is the distance between their tops?
(A) 13 m
(B) 14 m
(C) 15 m
(D) 12.8 m
10. In the given figure, $P R=26 \mathrm{~cm}, Q R=24 \mathrm{~cm}, \angle P A Q=90^{\circ}$, $P A=6 \mathrm{~cm}$ and $Q A=8 \mathrm{~cm}$. Find $\angle P Q R$
(A) 80°
(B) 85°
(C) 75°
(D) 90°

PTA-6
11. A tangent is perpendicular to the radius at the

(A) centre
(B) point of contact
(C) infinity
(D) chord

PTA-2
12. How many tangents can be drawn to the circle from an exterior point?
(A) one
(B) two
(C) infinite
(D) zero

SEP-21, JUL-22
13. The two tangents from an external points P to a circle with centre at O are $P A$ and $P B$. If $\angle A P B=70^{\circ}$ then the value of $\angle A O B$ is
(A) 100°
(B) 110°
(C) 120°
(D) 130°
14. If figure $C P$ amd $C Q$ are tangents to a circle with centre at O. $A R B$ is another tangent touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the length of $B R$ is

MDL
(A) 6 cm
(B) 5 cm
(C) 8 cm
(D) 4 cm

15. In figure if $P R$ is tangent to the circle at P and O is the centre of the circle, then $\angle P O Q$ is
(A) 120°
(B) 100°
(C) 110°
(D) 90°

2 mark Questions

1. In $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$
(i) If $\frac{A D}{D B}=\frac{3}{4}$ and $A C=15 \mathrm{~cm}$ find $A E$.

SEP-21
Given in $\triangle A B C, D$ and E are points an the sides $A B \& A C$ respectively such that $D E \| B C$
\therefore By Thales theorem, $\frac{A D}{D B}=\frac{A E}{E C}$
Let $E C=x, A E=15-x$
$\frac{3}{4}=\frac{15-x}{x}$
$3 x=60-4 x$
$3 x+4 x=60$

$7 x=60$
$x=\frac{60}{7}=8.57$
$A E=15-8.57=6.43 \mathrm{~cm}$
(ii) If $A D=8 x-7, D B=5 x-3, A E=4 x-3$ and $E C=3 x-1$, find the value of x.

By Thales theorem, $\frac{A D}{D B}=\frac{A E}{E C}$

$$
\begin{aligned}
& \frac{8 x-7}{5 x-3}=\frac{4 x-3}{3 x-1} \\
&(8 x-7)(3 x-1)=(4 x-3)(5 x-3) \\
& 24 x^{2}-8 x-21 x+7=20 x^{2}-12 x-15 x+9 \\
& 4 x^{2}-2 x-2=0 \\
& \div 2 \Rightarrow \quad 2 x^{2}-x-1=0 \\
&(x-1)(2 x+1)=0 \\
& x=1 \text { (or) } x=-\frac{1}{2} \Rightarrow \boldsymbol{x}=\mathbf{1}
\end{aligned}
$$

2. ABCD is a trapezium which $A B \| D C$ and P, Q are points on $A D$ and $B C$ respectively, such that $P Q \| D C$ if $P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm}$ and $Q C=15 \mathrm{~cm}$, and find $A D$.

In trapezium $A B C D, A B\|C D\| P Q$
Join $A C$, meets $P Q$ at R
In $\triangle A C D, P R \| C D$
By BPT, $\frac{A P}{P D}=\frac{A R}{R C}$

$$
\begin{equation*}
\frac{x}{18}=\frac{A R}{R C} \tag{1}
\end{equation*}
$$

In $\triangle A B C, R Q \| A B$
By BPT, $\frac{B Q}{Q C}=\frac{A R}{R C}$

$$
\begin{gather*}
\frac{35}{15}=\frac{A R}{R C} \\
\frac{7}{3}=\frac{A R}{R C} . \tag{2}
\end{gather*}
$$

From (1) and (2), $\frac{x}{18}=\frac{7}{3}$

$$
3 x=126
$$

$$
x=\frac{126}{3}=42
$$

$$
\text { If } A P=x
$$

$$
\begin{aligned}
& A P=42 \\
& A D=A P+P D=42+18=\mathbf{6 0} \mathbf{c m}
\end{aligned}
$$

3. Check whether $A D$ is bisector of $\angle A$ of $\triangle A B C$ in each of the following (i) $A B=5 \mathrm{~cm}, A C=10 \mathrm{~cm}, B D=1.5 \mathrm{~cm}$ and $C D=3.5 \mathrm{~cm}$

Given: In the $\triangle A B C$,

$$
\begin{align*}
& \frac{A B}{A C}=\frac{5}{10} \\
& \frac{A B}{A C}=\frac{1}{2} \ldots \tag{1}\\
& \frac{B D}{D C}=\frac{1.5}{3.5} \\
& \frac{B D}{D C}=\frac{15}{35} \\
& \frac{B D}{D C}=\frac{3}{7} \ldots \tag{2}
\end{align*}
$$

(1) \& (2) $\Rightarrow \frac{A B}{A C} \neq \frac{B D}{D C}$
$\therefore A D$ is not an angle bisector of $\angle A$
(ii) $A B=4 \mathrm{~cm}, A C=6 \mathrm{~cm}, B D=1.6 \mathrm{~cm}$ and $C D=2.4 \mathrm{~cm}$
$\frac{A B}{A C}=\frac{4}{6}$
$\frac{A B}{A C}=\frac{2}{3}$.
$\frac{B D}{C D}=\frac{1.6}{2.4}$
$\frac{B D}{C D}=\frac{16}{24}$
$\frac{B D}{C D}=\frac{2}{3}$.

CD
(1) \& (2) $\frac{A B}{A C}=\frac{B D}{C D}$
$\Rightarrow A D$ is the angle bisector of $\angle A$
4. A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?

Given, $B C=18 \mathrm{~m}, B A=24 \mathrm{~m}$
By Pythagoras theorem, $A C^{2}=A B^{2}+B C^{2}$

$$
\begin{aligned}
& =24^{2}+18^{2} \\
& =576+324 \\
A C^{2} & =900=30^{2} \\
A C & =\mathbf{3 0 m}
\end{aligned}
$$

5 mark Questions

Theorem 1: Basic Proportionality Theorem (BPT) or Thales theorem

Statement: A straight line drawn parallel to a side of triangle intersectin the other two sides, divides the sides in the same ratio.

Proof:

Given: In $\triangle A B C, D$ is a point on $A B$ and E is a point on $A C$.
To prove: $\frac{A D}{D B}=\frac{A E}{E C}$

Construction: Draw a line $D E \| B C$

No.	Statement	Reason	
1.	$\angle A B C=\angle A D E=\angle 1$	Corresponding angles are equal because $D E \\| B C$	
2.	$\angle A C B=\angle A E D=\angle 2$	Corresponding angles are equal because $D E \\| B C$	
3.	$\angle D A E=\angle B A C=\angle 3$	Both triangles have a common angle	
4.	$\triangle A B C \sim \triangle A D E$	By $A A A$ similarity	
	$\frac{A B}{A D}=\frac{A C}{A E}$	Corresponding sides are proportional	
$\frac{A D+D B}{A D}=\frac{A E+E C}{A E}$	Split $A B$ and $A C$ using the points D and E		
$1+\frac{D B}{A D}=1+\frac{E C}{A E}$	On simplification		
$\frac{D B}{A D}=\frac{E C}{A E}$	Cancelling 1 on both sides		
$\frac{A D}{D B}=\frac{A E}{E C}$	Taking reciprocals		

Corollary: If in $\triangle A B C$, a straight line $D E$ parallel to $B C$, intersects $A B$ at D and $A C$ at E, then
(i) $\frac{A B}{A D}=\frac{A C}{A E}$
(ii) $\frac{A B}{D B}=\frac{A C}{E C}$

2. Theorem 3: Angle Bisector Theorem

Statement: The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.

Proof:

Given : In $\triangle A B C, A D$ is the internal bisector
To prove:

$$
\frac{A B}{A C}=\frac{B D}{C D}
$$

Construction :
Draw a line through C parallel to $A B$. Extend $A D$ to meet line through C at E

No.	Statement	Reason
1.	$\angle A E C=\angle B A E=\angle 1$	Two parallel lines cut by a transversal make alternate angles equal.
2.	$\triangle A C E$ is isosceles $A C=C E \ldots \ldots(1)$	In $\triangle A C E, \angle C A E=\triangle C E A$
3.	$\begin{aligned} & \triangle A B D \sim \triangle E C D \\ & \frac{A B}{C E}=\frac{B D}{C D} \end{aligned}$	By $A A$ similarity
4.	$\frac{A B}{A C}=\frac{B D}{C D}$	From (1) $A C=C E$ Hence proved.

3. Theorem 4: Converse of Angle Bisector Theorem

Statement: If a straight line through one vertex of a triangle divides the opposite side internally in the ratio of the other two sides, then the line bisects the angle internally at the vertex.

Proof:

Given : $A B C$ is a triangle.
$A D$ divides $B C$ in the ratio of the sides containing the angles $\angle A$ to meet $B C$ at D.

That is $\frac{A B}{A C}=\frac{B D}{D C}$

To prove: AD bisects $\angle A \quad$ i.e. $\angle 1=\angle 2$

Construction : Draw $C E \| D A$. Extend $B A$ to meet at E.

No.	Statement	Reason	
1.	Let $\angle B A D=\angle 1$ and $\angle D A C=\angle 2$	Assumption	
2.	$\angle B A D=\angle A E C=\angle 1$	Since $D A \\| C E$ and $A C$ is transversal, corresponding angles are equal	
3.	$\angle D A C=\angle A C E=\angle 2$	Since $D A \\| C E$ and $A C$ is transversal, Alternate angles are equal	
4.	$\frac{B A}{A E}=\frac{B D}{D C} \ldots \ldots \ldots . .(2)$	In $\triangle B C E$ by thales theorem	
5.	$\frac{A B}{A C}=\frac{B D}{D C}$	From (1)	
6.	$\frac{A B}{A C}=\frac{B A}{A E}$	From (1) and (2)	
7.	$A C=A E \ldots \ldots . . .(3)$	Cancelling $A B$	
8.	$\angle 1=\angle 2$	$\Delta A C E$ is isosceles by (3)	
9.	$A D$ bisects $\angle A$	Since, $\angle 1=\angle B A D=\angle 2=\angle D A C$.	

4. Theorem 5: Pythagoras Theorem

Statement: In a right angle triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Proof:

Given: In $\triangle A B C, \angle A=90^{\circ}$
To prove : $A B^{2}+A C^{2}=B C^{2}$
Construction : Draw $A D \perp B C$

No.	Statement	Reason
1.	Compare $\triangle A B C$ and $\triangle D B A$ $\angle B$ is common $\angle B A C=\angle B D A=90^{\circ}$ Therefore, $\triangle A B C \backsim \triangle D B A$ $\begin{align*} \frac{A B}{B D} & =\frac{B C}{A B} \\ A B^{2} & =B C \times B D . \tag{1} \end{align*}$	Given $\angle B A C=90^{\circ}$ and by construction $\angle B D A=90^{\circ}$ By AA similarity
2.	Compare $\triangle A B C$ and $\triangle D A C$ $\angle C$ is common $\angle B A C=\angle A D C=90^{\circ}$ Therefore, $\triangle A B C \sim \triangle D A C$ $\begin{align*} \frac{B C}{A C} & =\frac{A C}{D C} \\ A C^{2} & =B C \times D C \ldots \tag{2} \end{align*}$	Given $\angle B A C=90^{\circ}$ and by construction $\angle A D C=90^{\circ}$ By AA similarity

Adding (1) and (2) we get

$$
\begin{aligned}
A B^{2}+A C^{2} & =(B C \times B D)+(B C \times D C) \\
& =B C \times(B D+D C) \\
& =B C \times B C \\
A B^{2}+A C^{2} & =B C^{2}
\end{aligned}
$$

Hence the theorem is proved.

Converse of Pythagoras Theorem

Statement: If the square of the longest side of a triangle is equal to sums of squares of other two sides, then the triangle is a right angle triangle.
5. Two triangle $Q P R$ and $Q S R$, right angled at P and S respectively are drawn on the same base $Q R$ and on the same side of $Q R$. If $P R$ and $S Q$ intersect at T, prove that $P T \times T R=S T \times T Q$.

In $\triangle P Q R$ and $\triangle S Q R$

Thus by $A A$ criterion of similarity we have $\triangle P T Q \sim \Delta S T R$

$$
\frac{P T}{S T}=\frac{T Q}{T R}
$$

$\Rightarrow P T \times T R=T Q \times S T$
6. Two vertical poles of heights $\mathbf{6 m}$ and $3 m$ are erected above a horizontal ground $A C$. Find the value of \boldsymbol{y}.

In $\triangle P A C, \triangle Q B C$ are similar triangles

$$
\begin{align*}
\frac{P A}{Q B} & =\frac{A C}{B C}=\frac{P Q}{Q C} \\
\frac{6}{y} & =\frac{A C}{B C} \\
y(A C) & =6 B C \ldots \ldots . . \tag{1}
\end{align*}
$$

$\triangle A C R$ and $\triangle A B Q$ are similar triangles

$$
\frac{C R}{Q B}=\frac{A C}{A B}
$$

(1) \& $(2) \Rightarrow 3 A B=6 B C$

$$
\frac{A B}{B C}=\frac{6}{3}=2
$$

$$
\begin{aligned}
& A B=2 B C \\
& A C=A B+B C \\
& A C=2 B C+B C \quad(A B=2 B C) \\
& A C=3 B C
\end{aligned}
$$

$$
\frac{3}{y}=\frac{A C}{A B}
$$

Substitute $A C=3 B C$ in (1) we get

$$
\begin{equation*}
3(A B)=(A C) y \tag{2}
\end{equation*}
$$

$(3 B C) y=6 B C$

$$
\begin{aligned}
y & =\frac{6 B C}{3 B C} \\
\boldsymbol{y} & =\mathbf{2} \boldsymbol{m}
\end{aligned}
$$

7. In figure $\angle Q P R=90^{\circ}, \mathrm{PS}$ is its bisector. If $S T \perp P R$, prove that $S T \times(P Q+P R)=P Q \times P R$.

Given: In the figure $\angle Q P R=90^{\circ}, \quad \mid$ In $\triangle P Q R$ and $\triangle S T R$
PTA-2
$\angle Q P R=90^{\circ}, \angle S T R=90^{\circ}$
$\angle P R S=\angle T R S=\angle R$ is common,
By AA similarity
$\therefore \frac{P Q}{S T}=\frac{Q R}{S R}=\frac{P R}{T R}$.
(1) \& (2) $\Rightarrow \frac{P Q+P R}{P R}=\frac{P Q}{S T}$

$S T(P Q+P R)=P Q \times P R$. Hence proved
4. Geometry - Important Questions B
8. The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle.
In $\triangle A B C ; \angle B=90^{\circ}$
Let $A B=x \Rightarrow A C=2 x+6$ and

$$
\begin{gathered}
B C=2 x+4 \\
(2 x+6)^{2}=x^{2}+(2 x+4)^{2} \\
4 x^{2}+36+24 x=x^{2}+4 x^{2}+16 x+16 \\
x^{2}+16 x-24 x+16-36=0 \\
x^{2}-8 x-20=0 \\
(x-10)(x+2)=0 \\
x=10 \text { (or) } x=-2 \\
\text { But } x \neq-2 \\
\text { If } x=10 \\
\Rightarrow A C=2 x+6 \\
=20+6=26 \\
\Rightarrow B C=2 x+4 \\
=20+4=24
\end{gathered}
$$

\therefore The sides are $\boldsymbol{A B}=\mathbf{1 0 m}$;

$$
B C=24 m ; \quad A C=26 m
$$

9. The perpendicular $P S$ on the base $Q R$ of a $\triangle P Q R$ intersects $Q R$ at S, such that $Q S=3 S R$. Prove that $2 P Q^{2}=2 P R^{2}+Q R^{2}$

Given the $\triangle P Q R$, the perpendicular on the base $Q R$ at S, such that $Q S=3 S R$
In $\triangle P Q S \Rightarrow P Q^{2}=P S^{2}+Q S^{2}$

$$
\begin{aligned}
\triangle P S R & \Rightarrow P R^{2}=P S^{2}+S R^{2} \\
& \Rightarrow P S^{2}=P R^{2}-S R^{2}
\end{aligned}
$$

$$
\begin{aligned}
Q R & =Q S+S R \\
& =3 S R+S R
\end{aligned}
$$

$$
Q R=4 S R
$$

$$
\frac{Q R}{4}=S R
$$

$$
P Q^{2}=P R^{2}-S R^{2}+(3 S R)^{2}
$$

$$
P Q^{2}=P R^{2}-S R^{2}+9 S R^{2}
$$

$$
P Q^{2}=P R^{2}+8 S R^{2}
$$

$$
P Q^{2}=P R^{2}+\frac{8 Q R^{2}}{16}
$$

$$
\Rightarrow 2 P Q^{2}=2 P R^{2}+Q R^{2}
$$

10. Show that the angle bisectors of a triangle are concurrent.

In the $\triangle A B C$, " O " is any point inside the Δ
The angle bisector $\angle A O B, \angle B O C$, and $\angle A O C$ meet the sides $A B, B C \& C A$ at $D, E \& F$ respectively.
\therefore In $\triangle B O C, O D$ is the bisector of $\angle B O C$
$\therefore \frac{O B}{O C}=\frac{B D}{D C}$
Similarly in the triangle $A O C \& A O B$ we get
$\frac{O C}{O A}=\frac{C E}{A E}$

$\frac{O A}{O B}=\frac{A F}{F B}$
(1) $\times(2) \times(3) \Rightarrow \frac{O B}{O C} \times \frac{O C}{O A} \times \frac{O A}{O B}=\frac{B D}{D C} \times \frac{C E}{A E} \times \frac{A F}{E B}$

$$
\begin{equation*}
\frac{B D}{D C} \times \frac{C E}{A E} \times \frac{A F}{F B}=1 \tag{4}
\end{equation*}
$$

If $A D, B E \& C F$ are the bisectors of $\angle A, \angle B \& \angle C$ then by $A B T$

$$
\begin{gathered}
\frac{A B}{A C}=\frac{B D}{D C} ; \frac{B C}{C A}=\frac{A F}{F B} ; \frac{A B}{B C}=\frac{A E}{E C} \\
\frac{A B}{A C} \times \frac{B C}{C A} \times \frac{A B}{B C}=\frac{B D}{D C} \times \frac{A F}{F B} \times \frac{A E}{E C} \\
1=1 \quad(\text { By (4)) }
\end{gathered}
$$

$\therefore O$ is the point of concurrent.
The angle bisectors of a triangle concurrent

